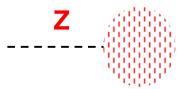
The G0 Experiment at Jefferson Lab

G0: Measurement of the Strange **Quark Currents in the Proton**

G0 Collaboration:


Caltech, CMU, IPN-Orsay, ISN-Grenoble, JLab, LaTech, NMSU, TRIUMF, UIUC, U.Kentucky, U.Manitoba, U.Maryland, UNBC, Virginia Tech, William & Mary, Yerevan

Measure G_{7}^{P} : Weak form factor of the proton

- a "new" & fundamental property of the proton
- Weak interaction analogue of the usual EM form factors

distribution

 G_{v}^{p} : EM current G_{z}^{p} : weak current distribution

G^p₇ via parity-violating e-p scattering asymmetry

 $G_{z}^{p}, G_{y}^{p} \Rightarrow G_{x}^{p,s}$, Strangeness form factor of the proton

Weak "charge" & "magnetic" (Sachs) Form Factors

$$G_E, G_M \iff F_1, F_2$$

FORM FACTORS from PV ASYMMETRY

PV Asymmetry PROTON FORM FACTORS
$$A(Q^2) = -\underbrace{(G_FQ^2)}_{\pi\alpha\sqrt{2}} \ \underbrace{\left\{ \ \epsilon G^{\gamma}_E G^Z_E + \tau G^{\gamma}_M G^Z_M + \eta G^{\gamma}_M G^Z_A \right\} \ [\ 1/P_Z\]}_{\epsilon(G^{\gamma}_E)^2 + \tau(G^{\gamma}_M)^2}$$

(where ε , τ , η are kinematical parameters)

WANT TO EXTRACT GZE and GZM

DO 2 MEASUREMENTS OF A(Q²) [Rosenbluth-like separation]

For a given Q^2 , ϵ ranges from 0 (large angles) \rightarrow 1 (small angles)

- i) At large (backward) angles to determine G_{M}^{Z}
- ii) At small **(forward)** angles to measure combination of G_E^Z and G_M^Z \to extract G_E^Z

GO MEASUREMENTS: 3 PHASES

- A) Forward Angle Mode
- B) Back Angle Mode
- C) Deuterium Target Mode (Rad. Corr. to G_A^Z)
- D) At Back-Angles, will also measure (concurrently) the N-Δ axial transition form factor

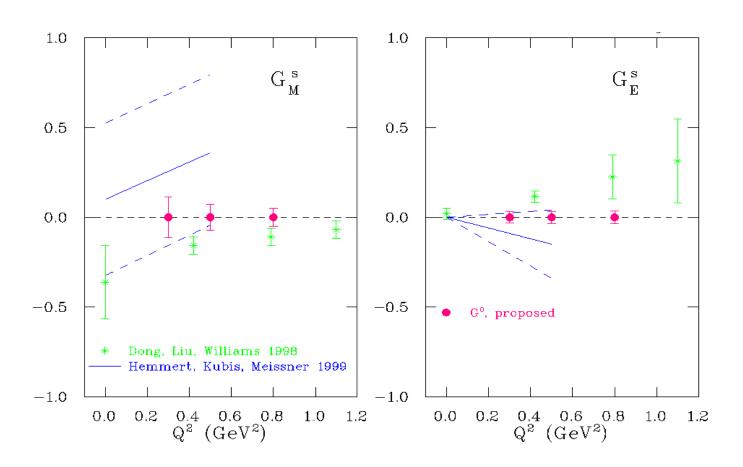
NUCLEON STRUCTURE and QUARKS

CURRENTS:

$$\begin{split} \mathbf{G}^{\gamma\,p}_{\quad E,M} &\to \Sigma \; \mathbf{Q}_{j} \langle \mathbf{p} | \; \mathbf{q}_{j} \gamma^{\mu} \mathbf{q}_{j} \; | \mathbf{p} \rangle \\ \mathbf{G}^{Z\,p}_{\quad E,M} &\to \Sigma \; (\; 1/2 T^{3}_{\;\; j} - \mathbf{Q}_{j} \mathrm{sin}^{2} \theta_{W} \;) \; \langle \mathbf{p} | \; \mathbf{q}_{j} \gamma^{\mu} \mathbf{q}_{j} \; | \mathbf{p} \rangle \end{split}$$

EW Nucleon Form Factors → Written as sum of contrib. from each flavour (neglect heavy quarks c,t,b)

$$\begin{split} \textbf{G}^{\gamma\,p}_{\quad E,M} = & \ (1/3) \ [2\textbf{G}^{u,p}_{\quad E,M} - \textbf{G}^{d,p}_{\quad E,M} - \textbf{G}^{s,p}_{\quad E,M}] \\ \textbf{G}^{Z\,p}_{\quad E,M} = & \ (1/4 - ^2/_3 \sin^2\!\theta_W) \textbf{G}^{u,p}_{\quad E,M} - (1/_4 - ^1/_3 \sin^2\!\theta_W) \textbf{G}^{d,p}_{\quad E,M} \\ & - (1/_4 - ^1/_3 \sin^2\!\theta_W) \textbf{G}^{s,p}_{\quad E,M} \\ \textbf{G}^{\gamma\,n}_{\quad E,M} = & \ (1/3) \ [2\textbf{G}^{u,n}_{\quad E,M} - \textbf{G}^{d,n}_{\quad E,M} - \textbf{G}^{s,n}_{\quad E,M}] \end{split}$$


ASSUMING ISOSPIN SYMMETRY OF THE PROTON AND NEUTRON

$$\begin{aligned} G_{E,M}^{u,p} &= (3 - 4sin^{2}\theta_{W})G_{E,M}^{\gamma p} - 4G_{E,M}^{Z p} \\ G_{E,M}^{d,p} &= (2 - 4sin^{2}\theta_{W})G_{E,M}^{\gamma p} + G_{E,M}^{\gamma n} - 4G_{E,M}^{Z p} \end{aligned}$$

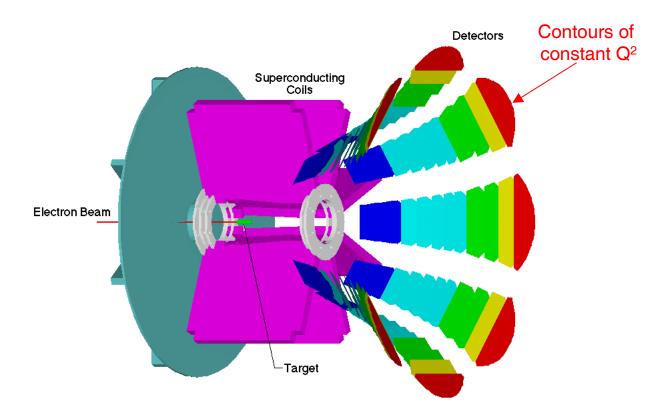
$$\mathbf{G}^{\mathsf{s},\mathsf{p}}_{\mathsf{E},\mathsf{M}} = (\mathbf{1} - 4\mathsf{sin}^2\theta_\mathsf{W})\mathbf{G}^{\mathsf{\gamma}\,\mathsf{p}}_{\mathsf{E},\mathsf{M}} - \mathbf{G}^{\mathsf{\gamma}\,\mathsf{n}}_{\mathsf{E},\mathsf{M}} - 4\mathbf{G}^{\mathsf{Z}\,\mathsf{p}}_{\mathsf{E},\mathsf{M}}$$

THEORETICAL ESTIMATES & EXPECTED ERRORS for G0

Related Measurements

HAPPEX $(G_E^S + 0.39G_M^S)$ at $Q^2=0.47$ $(GeV/c)^2$ consistent with zero

SAMPLE G_M^S at $Q^2 = 0.1 (GeV/c)^2$


Recently (prelim)

PVA4 at Mainz ($G_E^S + 0.21G_M^S$): $Q^2 = 0.23 (GeV/c)^2$

SAMPLE 2001 (D_2 Tgt): $Q^2 = 0.03$ (GeV/c)²

HAPPEX: $Q^2 = 0.1 (GeV/c)^2$

G0 Schematic Layout and Experiment Parameters

Measure Scatt.Asymmetry, A_z for $e^-(\Rightarrow and \Leftarrow)$ on p **Goal**: Measure $A_z \sim 5 \times 10^{-6}$ to $(\Delta A/A) \sim \pm 5 \% (10^{-7})$

Experiment Parameters:

Beam Structure 31.25 MHz (32 ns)

Beam Current 40 μA Polarization 70 %

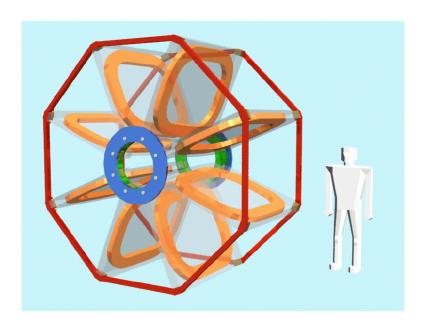
Energy 0.3 – 3 GeV

Target 20 cm LH₂

Systematics: (h.c. variables)

 ΔE < 2.5 × 10⁻⁸

 $\Delta Q/Q$ < 1 ppm \rightarrow over 30 days


 Δx < 20 nm

 $\Delta\theta$ < 2 nrad


Superconducting Toroidal Magnet

8-Sector R ~ 2m, L ~ 2m Iron-free T_0 ~ 4.5 K $\Delta\Omega$ ~ 0.5–0.9 sr

(forward mode) $I_0 \sim 5 \text{ kA}$ $B_\phi \sim 1.7 \text{ T}$

Liquid Hydrogen Target

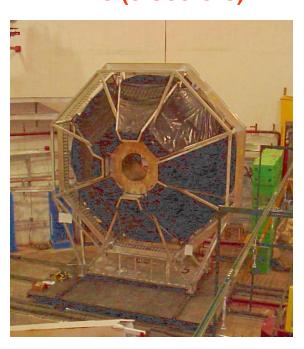
20 cm LH₂ cell

250 W heat load from beam

High circulation rate to minimize target density fluctuations

Forward Angle Configuration

Focal Plane Detectors (Single Sector)



North American FPD octant

French FPD octant

FPDs (8 Sectors)

FPDs on ferris-wheel support

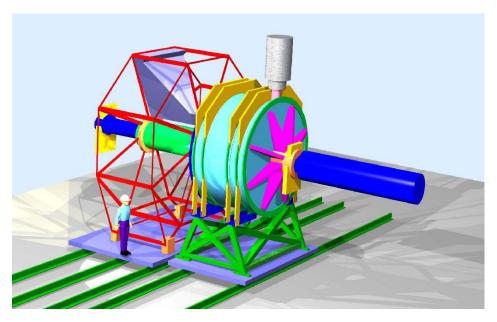
Scintillators

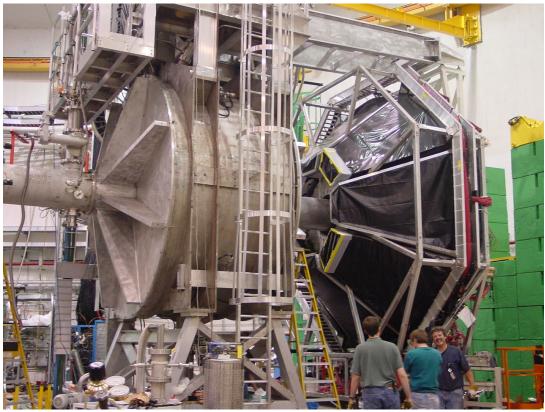
→ Shape: Q² Contours

 \rightarrow Segmentation: R < 1 MHz

LightGuides

→ Long guides w/ helical bends

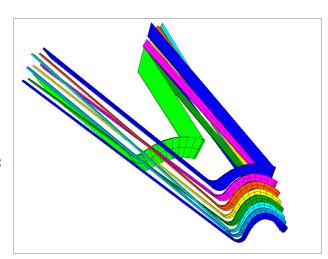

Electronics/DAQ 32 ns between bear

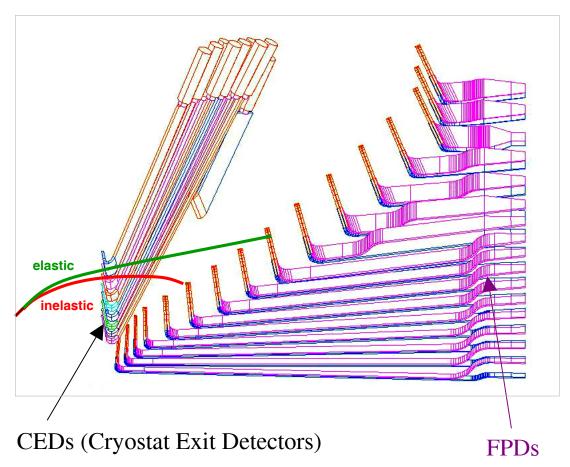

32 ns between beam pulses TOF to select elastics

→NA: MT → LTDs → Scalers ("Scalers" TOF spectra, 1 ns)

→Fr: MT → Flash TDCs (0.25 ns)

Forward Angle Configuration

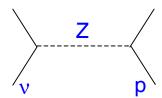

G0 Target-Magnet-FPD in Hall C


Back-Angle Configuration (Hydrogen Target)

Magnet & Detector Package turned around

Measure back-scattered electrons

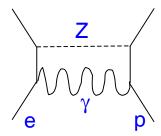
- Require additional det.^s
 Cryostat-Exit Detectors
 (CEDs)
- CED-FPD coincidence used to separate elastic & inelastic electrons
- Inelastics
 (N-∆ axial transition FF)

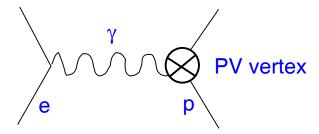


Axial Form Factor of the Proton

PV Asymmetry: $A(Q^2) \propto \varepsilon G^{\gamma}_{E} G^{Z}_{E} + \tau G^{\gamma}_{M} G^{Z}_{M} + \eta G^{\gamma}_{M} G^{Z}_{A}$

Extract G_{E}^{Z} and G_{M}^{Z} ; G_{E}^{γ} and G_{M}^{γ} known;


 $\mathbf{G}^{\mathbf{Z}}_{\mathbf{A}}$ from v-p scattering, but...


In e-p scattering, there are radiative corrections:

$$G^{Z}_{A} \rightarrow G^{e}_{A} = G^{Z}_{A} + R^{e} + \eta F_{A}$$

(a) "Standard" radiative corrections, Re

(b) Additional diagrams with Z⁰/W[±] exchange between quarks

(more complicated calculation)

An "effective" axial (PV) coupling of the photon to the nucleon, identified as: **F_A**, the **Anapole Moment** of the nucleon (Zel'dovich, '57)

Effective Axial Form Factor

Radiative corrections: $G^{Z}_{A} \rightarrow G^{e}_{A} = G^{Z}_{A} + R^{e} + \eta F_{A}$

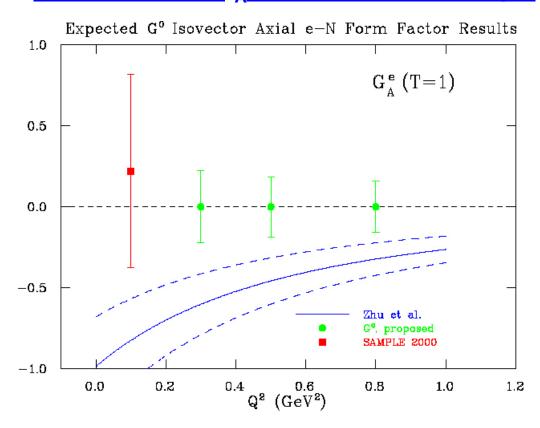
Option:

Compute radiative correction terms, F_A.

Musolf & Holstein (90): Low energy eff. theories of Hadronic Weak Int.

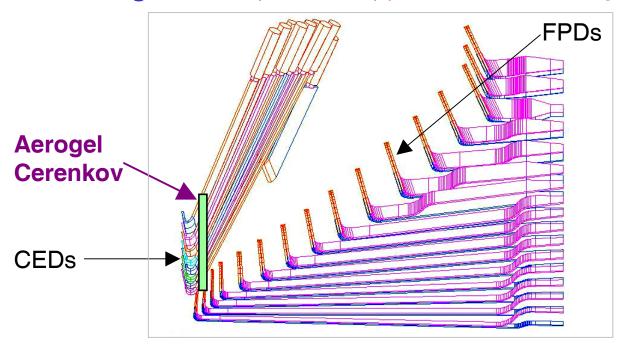
Weak meson-nucleon couplings (DDH param.s: h_o , f_{π})

Large Uncertainties


Alternate Option:

Deuterium quasielastic scattering at back-angles is more sensitive to $G_{M}^{e} \rightarrow eg.$, at $Q^{2} \sim 0.1 \text{ GeV}^{2}$

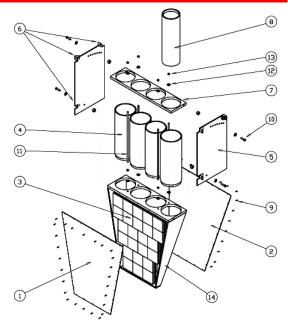
$$A^{ed} \sim Q^2 (1 + 0.22 G_A^e - 0.10 G_M^S)$$


vs
$$A^{ep} \sim Q^2 (1 + 0.24 G_A^e - 0.61 G_M^S)$$

Extraction of Ge with Deuterium Target

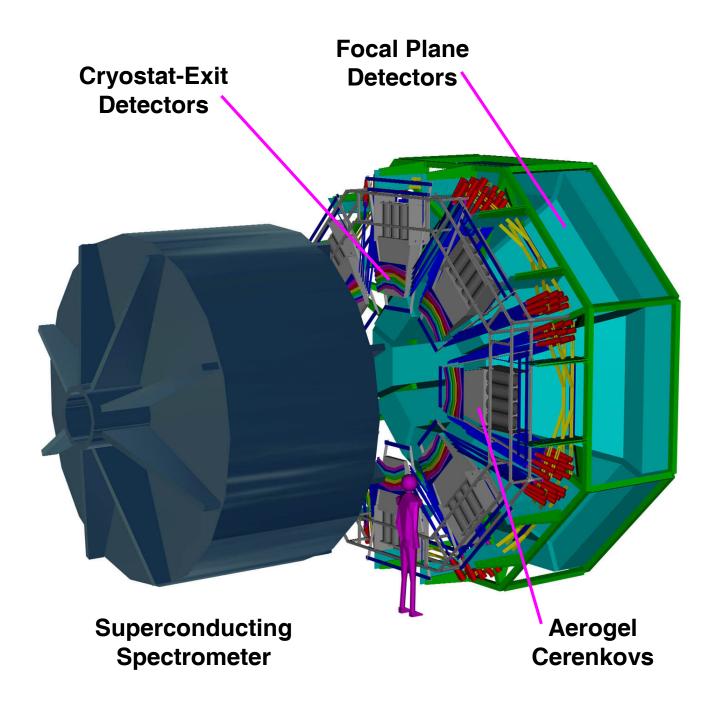
Back-Angle Configuration (Deuterium Target)

Pion Backgrounds: (FPD, CED) plus Cerenkov Arrays


Back-scattered electron:

CED-FPD coinc. separates elastic & inelastic e- 's

Background pions from π -production off D_2 & AI:


Cerenkov for π^-/e^- separation (n ~ 1.03)

Prototype Aerogel Cerenkov:

G0 Back-Angle Configuration

Status of G0 Experiment

Forward Angle Mode:

Construction Completed Commissioning Phase

Backward Angle Mode:

Additional Detectors being fabricated

Schedule:

1st Commissioning Run (Non-physics) Aug, Sep 2002

2nd Commissioning & Physics Runs Fall 2002

2003

"Turn around" to Back-Angles & Physics Run 2004

[1st Q² point (0.8 Gev²)]

Physics Run 2005

[2nd and 3rd Q² points]

G0 Aug/2002 Commissioning Run

G0 Beam:

Laser(s) → 31 MHz beam delivered

Beam Current ~ 10 μA

Beam sizes \rightarrow initially large $\sigma \sim 1-2$ mm,

 \rightarrow eventually $\sigma \sim 0.22$ mm

Exercised helicity-control devices

Measurements w/ Beam monitors

Magnet & Target:

Magnet cold, not energized [Sep/2002] Target installed, not used (solid target)

Detectors & DAQ:

FPDs turned on

Backgrounds studied, Rates measured

Fastbus/Diagnostic events obtained

Some Time-Encoding data obtained

SUMMARY

- G0 will contribute to the measurement of a "new" and fundamental property of the proton
 (G^p_z: weak current distribution of the proton).
- 2) Measurement of G^p_Z enables decomposition of the proton ground state matrix elements into quark contributions (G^{pu} , G^{pd} , and G^{ps} -- strange quark current distribution; a direct measurement of the quark sea).
- The physics is of great current interest and high priority. Questions related to $s\bar{s}$ pairs in nucleon: contributions to E-J sum rule, and to πN sigma term. $G^{ps} \rightarrow definitive$ statement about $s\bar{s}$ pairs.
- 4) With additional measurements on deuterium, G0 will also be able to make a statement about the **anapole moment** of the proton.